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Abstract. Coherent states are used as trial states to determine, variationally, the structure of the eigenvec-
tors belonging to a schematic Hamiltonian consisting of single-particle, pairing and residual proton-neutron
interaction terms. It is shown that the standard proton-neutron quasiparticle random-phase approximation
(pn-QRPA) is recovered, as a variational theory, by replacing quasiparticle pair creation and annihilation
operators by bosons. It is also shown that an exact, algebra preserving, mapping of the Hamiltonian is
needed to describe the spectrum beyond the QRPA phase transition. The role of the spurious components
of the trial wave functions is discussed.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 21.60.Fw Models based on group theory
– 23.40.Hc Relation with nuclear matrix elements and nuclear structure

1 Introduction

The question about the validity and predictive power of
approximate methods, like the particle-hole random-phase
approximation (RPA) or the quasiparticle random-phase
approximation (QRPA) and related formalisms, has been
revisited in the last years. The interest in such a type
of theoretical studies has been renewed, mainly, by the
need to describe isospin-dependent nuclear correlations in
the vicinity of transitions from the spherical to the de-
formed domains in isospace [1,2]. The notion of intrinsic
and collective isospin degrees of freedom, in dealing with
the theoretical description of nuclear double beta-decay
transitions, has been reported in a number of publications
(for a comprehensive list of references please see [3]). The
use of schematic Hamiltonians [4–6], has been extremely
fruitful in revealing the interplay between different degrees
of freedom. We shall profit from the use of a schematic,
albeit realistic, Hamiltonian in the present discussion to
explore the basic structure of more realistic models. The
extent to which the isospin symmetry is broken by the
residual interactions, or equivalently, the induced isospin
mixing in the ground state, has been studied from differ-
ent corners. The reported studies included formal group
theoretical approaches [7–10], boson expansions methods
[11–14], collective models [15] and the comparison between
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the QRPA formalism and the bosonic and fermionic real-
izations of the problem [14]. The results of these studies
can be compared with those obtained by using extensions
of the QRPA formalism [16–19] or ad hoc renormaliza-
tion procedures [20]. The group theoretical treatment of
schematic proton-neutron interactions developed in [6,8]
was re-phrased lately [21] in the language of a semiclassi-
cal analysis [22]. In order to introduce the material of the
present work, we shall review some of the basic concepts
related to the use of the variational principle. As is well
known, the variational principle

δ
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉 = 0 (1)

is equivalent to the Schrödinger equation and, for a many-
body wave function |Ψ〉, it provides the best approxima-
tion to the exact solution in a given Hilbert space [23].
Trial wave functions of the exponential type

|Φ(z)〉 = N0 exp

{ ∑
k<k′

zkk′a†
ka†

k′

}
|Φ0〉 (2)

are the most general Hartree-Fock (HF)–type of wave
functions which can be introduced in fermionic represen-
tations, if the operators a†

k are fermion creation operators,
and the general RPA-type wave functions when these op-
erators represent bosons [23]. In this work we shall de-
scribe the treatment of a model Hamiltonian by using
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different trial wave functions. Following the method pre-
sented in ref. [14], the ground-state wave function and the
Hamiltonian are explicitly written in terms of fermionic,
or bosonic, variables and the coefficients of the expansion
are determined by a minimization. Once the structure of
the ground state is determined, the spectrum of H is con-
structed by acting with pair creation, or boson, operators,
on the variational ground state. In this manner, the eigen-
values and the matrix elements for transitions between
eigenstates can be calculated and eventually compared
with the exact results. The simplest trial wave function
is the coherent state [24],

b |α〉 = α|α〉, (3)

defined as the eigenstate of the boson annihilation oper-
ator. Another suitable trial wave function is a truncated
representation of the coherent state, which does not in-
clude spurious states and preserves the symmetries of the
Hamiltonian. Finally, one can define a trial wave function,
the correlated ground state |g.s.(QRPA)〉, which obeys

Γ |g.s.(QRPA)〉 = 0. (4)

In (4), Γ is the Hermitian conjugate of the QRPA one-
phonon creation operator Γ †. Since the structure of the
eigenvalues of H, in the QRPA approach, is determined
by the equation of motion

[H,Γ †] = ωΓ † , (5)

the QRPA ground state |g.s.(QRPA)〉 is a coherent state
associated with the operator Γ , with zero eigenvalue. It
has been shown [25,26], that the RPA (or the QRPA)
theory belongs to the class of variational theories. We will
show in detail how the variational structure of the the-
ory manifests itself when coherent states are used as trial
states. As pointed out [27], in using boson realizations of
the Hamiltonian, the adopted boson mapping should pre-
serve the algebra of the original fermionic operators [14].
In the present work we have adopted the Dyson boson
expansion method, as a convenient mapping [17,24,27].
Effects due to the violation of the Pauli principle, in the
context of the boson expansion method, can be explored
by using exponential and polynomial expansions. Follow-
ing the method of [11,14], we shall introduce a complex
order parameter to study the sensitivity of expectation
values in the pn-QRPA, the exponential and in the Dyson
boson expansion representations. We have found that the
boson mapping describes correctly the phase transition.
Clearly, the combined way consisting of the complete bo-
son mapping of the Hamiltonian and the approximate one
of the wave functions is a non-perturbative approach and
it goes well beyond the mean-field approximation, as the
exact solution does. We have organized the material of this
work in the following manner. The formalism is presented
in sect. 2, where the Hamiltonian and the essentials of the
QRPA and of the Dyson boson mapping are introduced.
In sect. 3 the different approximations used to construct
the wave functions are described, and in sect. 4 the results
corresponding to the matrix elements of the Hamiltonian

H, calculated by using the approximations described in
sect. 3, are shown. Results are presented and discussed in
sect. 5. Conclusions are drawn in sect. 6.

2 The Hamiltonian

The Hamiltonian adopted for the present calculations
is [1,2]

H =
∑
pj

epjNpj +
∑

j

enjNnj − GpS
†
pSp − GnS†

nSn

+2χβ−β+ − 2κP−P+ . (6)

This form of H has been used previously both in real-
istic and in schematic calculations [4–6,11,14]. It con-
tains single-particle energies, monopole pairing terms and
charge-exchange particle-hole and particle-particle (hole-
hole) terms. The Hamiltonian (6) has been used both for
the description of Fermi (∆J = 0,∆T = ±1) and Gamow-
Teller (∆J = 1,∆T = ±1) excitations and the corre-
sponding transitions [6,9]. For the sake of simplicity we
proceed with the case of Fermi transitions, and the corre-
sponding definitions are the following:

Nqj =
∑
m

a†
qjmaqjm,

S†
q =

∑
jm

a†
qjma†

qjm
, Sq = (S†

q)†, q = p, n,

β− =
∑
jm

〈pjm|τ−|njm〉a†
pjmanjm,

β+ = β−†
,

P− =
∑
jm

〈pjm|τ−|njm〉a†
pjma†

njm
,

P+ = P−†
. (7)

These operators are the number operator, the monopole
pair operator and the charge-exchanging particle-hole and
particle-particle operators, respectively. Proton and neu-
tron single-particle orbits, of angular momentum j and
projection m, are denoted by the index q (q = p for pro-
tons and q = n for neutrons) and a†

qjm is a particle cre-
ation operator and a†

qjm
= (−1)j−ma†

q j −m its time re-
versal. We consider the one-shell limit of this Hamiltonian
and pairing effects are accounted for by a quasiparticle
mean field, defined separately for protons and neutrons
[28]. In the BCS representation the quasiparticle proton-
neutron pair operator has the form

A† =
[
α†

p ⊗ α†
n

]J=0

M=0
, (8)

where α†
q (αq) are quasiparticle creation (annihilation) op-

erators. Keeping in the Hamiltonian only bilinear products
of A† and A, we arrive at the expression [6,8,14]

H = ε C + λ1A
†A + λ2(A†A† + AA) , (9)
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where the proton and neutron quasiparticle energies have
been replaced by a common value ε. The operator C and
the coupling constants λ1 and λ2 of eq. (9) are defined by

C =
∑
mp

α†
pmp

αpmp
+

∑
mn

α†
nmn

αnmn
, (10)

λ1 = 4Ω
[
χ(u2

pv
2
n + v2

pu2
n) − κ(u2

pu
2
n + v2

pv2
n)

]
, (11)

λ2 = 4Ω(χ + κ)upvpunvn , (12)

where 2Ω = (2j + 1) is the degeneracy of the single j-
shell in a standard notation [28]. The parameters χ and κ
are the strengths of the particle-hole and particle-particle
channels of the monopole proton-neutron interaction, and
up(n) and vp(n), are the proton (neutron) BCS occupation
numbers. In the one-shell limit, the occupation numbers
v2

q are Nq

2Ω . The operators A†, A and C satisfy the SU(2)
quasispin algebra [6]

[A,A†] = 1 − C

2Ω
, [C,A†] = 2A† . (13)

This model is a proton-neutron realization of the Lipkin
model [29]. Previous studies of this model, which are rele-
vant for the present work, can be found in refs. [19,25,30].
In particular, we are following the notation of ref. [31].

Exact solutions

As is shown in [31], the exact solutions of (9) are obtained
by diagonalizing the Hamiltonian in the basis

|n〉 = (2Ω)
n
2

√
(2Ω − n)!
n!(2Ω)!

(A†)n|〉 , (14)

where |〉 is the quasiparticle vacuum. Acting with the
quasiparticle pair creation operator on this state one ob-
tains

A†|n〉 =

√
(2Ω − n)(n + 1)

2Ω
|n + 1〉, (15)

which explicitly shows that the maximum number of pairs
allowed in any state is 2Ω, as dictated by the Pauli princi-
ple. The non-zero matrix elements of the Hamiltonian are
of the form

〈n|H|n〉 = (2ε + λ1)n + λ1n
1 − n

2Ω
,

〈n+2|H|n〉 =
λ2

2Ω

√
(2Ω−n)(2Ω−n−1)(n+1)(n+2) ,

〈n−2|H|n〉 =
λ2

2Ω

√
(2Ω−n+2)(2Ω−n+1)n(n−1). (16)

Since the Hamiltonian of eq. (9) can only connect states
(14) such that ∆n = 0,±2, its eigenfunctions can be writ-
ten in terms of linear combinations of states with even (e)
or odd (o) values of n (the number of quasiparticle pairs),
namely:

|λ, e〉 =
Ω∑

n=0

Cλ
n,e|2n〉 , |λ, o〉 =

Ω−1∑
n=0

Cλ
n,o|2n+1〉. (17)

In this notation λ is the eigenvalue index, thus |λ = 1, e〉
and |λ = 1, o〉 are the exact ground state of the even-even
and of the odd-odd nuclei, respectively.

Boson mapping

Following the discussion presented in [14], we shall intro-
duce a boson mapping of eq. (9) which preserves the Pauli
principle. The Dyson mapping [24,27] of the Hamiltonian
(9) can be performed by replacing the quasiparticle-pair
operators by the corresponding Dyson images

(A†)D = b†
(

1 − b†b
2Ω

)
, (A)D = b , (C)D = 2b†b , (18)

where the index D refers to the Dyson mapping and
proton-neutron bosons are denoted by b† or b. The opera-
tors b† and b are boson creation and annihilation operators
which obey exact boson commutation relations. The num-
ber of proton-neutron bosons, nb = 〈b†b〉, is restricted by
the condition nb ≤ 2Ω, which guarantees that spurious,
non-physical, states are excluded [24,27]. The transformed
Hamiltonian is given by

(H)D = (2ε + λ1)b†b − λ1

2Ω
b†

2
b2 + λ2

(
1 − 1

2Ω

)
b†

2

−λ2

Ω

(
1 − 1

2Ω

)
b†

3
b +

λ2

4Ω2
b†

4
b2 + λ2b

2 . (19)

While the above form of the Hamiltonian is non-
Hermitian, because we have used the non-Hermitian
Dyson mapping, it has the advantage of having a finite
number of terms. Thus, it can be diagonalized and the
exact results can be straightforwardly compared with the
approximate ones. In the limit 2Ω → ∞ we obtain the
simplest quasiboson image [27] of the QRPA Hamiltonian

HQRPA = (2ε + λ1)b†b + λ2(b†
2

+ b2). (20)

The QRPA formalism

The main assumption of the QRPA is that the one-phonon
creation operator can be built as a linear combination of
proton-neutron pair creation and annihilation operators
acting on the correlated vacuum (4). In the present model
there is only one phonon, which is written as

Γ † =
(
XA† − Y A

)
, (21)

and from this assumption the usual QRPA matrix-
equations [17,31](

A, B
−B, −A

)(
X
Y

)
= ω U

(
X
Y

)
, (22)

are obtained. The (1×1) matrices A, B, and U are defined
by the expectation values

A = 〈0|[A,H,A†]|0〉, B = −〈0|[A,H,A]|0〉,
U = 〈0|[A,A†]|0〉, (23)
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where [A,H,A] is the double commutator [A, [H,A]] and
|0〉 is the correlated vacuum. The normalization of the
excited states Γ †|0〉 is obtained by evaluating the vacuum
expectation value of the commutator [Γ, Γ †]

〈0|[Γ, Γ †]|0〉 = (X2 − Y 2)
(

1 − 〈0|C|0〉
2Ω

)
, (24)

where forward (X)- and backward (Y )-going QRPA am-
plitudes satisfy

X2 − Y 2 = 1. (25)

The so-called quasiboson approximation is consistent with
the value

〈0|ΓΓ †|0〉 = 1, (26)

which is valid except in the strong coupling limit. This
limit involves large values of λ2, such as 2λ2 → 2ε + λ1.
In this limit X → ∞, Y → ∞ and 〈0|C|0〉 → 2Ω, and
the QRPA eigenstate cannot be normalized. The matrix
elements A and B, of the eq. (22), are obtained by assum-
ing that the correlated vacuum and the fermionic ones
coincide, i.e.

〈0|C|0〉RPA = 0, ARPA = 2ε + λ1, BRPA = 2λ2. (27)

The QRPA excitation energy ω [14] is given by ω =
[(2ε + λ1)2 − (2λ2)2]1/2, and it vanishes for 2λ2 = 2ε + λ1.
Replacing this value in eq. (22), the second condition for
the wave function is obtained

Y

X
=

ω−A

B
=

[(2ε + λ1)2 − (2λ2)2]1/2 − 2ε − λ1

2λ2
, (28)

and the ratio | Y
X | goes to 1 as ω approaches zero.

3 Trial states

After performing the boson mapping we shall introduce
trial states, which are related to coherent states [24,27].
The simplest coherent state allows for any number of
bosons, without taking into account the Pauli principle.
This trial state, which is a solution of eq. (3) in the one-
dimensional case, is defined as

|α∞〉 = N∞ exp{−αb†}|〉 = N∞
∞∑

l=0

αl

l!
b†

l|〉 . (29)

The excited state |1∞〉 is

|1∞〉 =
N1∞
N∞

b† |α∞〉 . (30)

Although simpler in form, these trial states have many
shortcomings since they include Pauli-principle violating
terms. Also, the excited state is orthogonal to the ground
state only when α = 0. Both states have odd- and even-
number of bosons, which are not mixed by the Hamilto-
nian. To overcome this problems the trial states |α̃〉 and

〈α| are introduced as [14]

〈α| = 〈|N0

Ω∑
l=0

α∗2l

(2l)!
(A)2l

D = 〈|N0

Ω∑
l=0

α∗2l

(2l)!
b2l ,

|α̃〉 = Ñ0

Ω∑
l=0

α2l

(2l)!
(A†)2l

D |〉 =

Ñ0 (2Ω!)
Ω∑

l=0

[ α

2Ω

]2l (b†)2l

(2l)!(2Ω − 2l)!
|〉 . (31)

The upper value l = Ω in the sum guarantees that the
Pauli principle is observed. Since the Dyson boson map-
ping is non-Hermitian we have to deal with different bra
(〈α|) and ket (|α̃〉) spaces. The excited states are again
built as a boson creation operator acting on each of these
states, i.e.

〈1| = N1
N0

〈α| b = 〈|N1

Ω−1∑
l=0

α∗2l

(2l)!
b2l+1 ,

|1̃〉 = Ñ1

Ñ0
b†|α̃〉 = Ñ1 (2Ω!)

Ω−1∑
l=0

[ α

2Ω

]2l (b†)2l+1

(2l)!(2Ω − 2l)!
|〉 .

(32)

Another type of trial wave function is the QRPA vacuum,
solution of eq. (4). In the limit 2Ω → ∞ the QRPA cre-
ation operator defined in eq. (21) is

Γ †=
(
XA†−Y A

)≈(
Xb†−Y b

)
=(b†−zb)/

√
1−|z|2 , (33)

where z = Y/X and the normalization is fixed by (25).
The QRPA vacuum |0〉 has the form

|0〉 = N0 exp{−z(b†)2}|〉 = N0
∞∑

l=0

zl

l!
b†

2l|〉, (34)

and the excited state is

Γ †|0〉 =
√

1 − |z|2 b†|0〉. (35)

Spurious states

In realistic situations the use of the Dyson boson mapping
is associated with the occurrence of spurious states, which
may appear as a result of the choice of the boson basis [32].
In this context, the adequacy of the boson basis and the
identification of spurious states has been discussed in [32–
34]. The consequences of the use of the effective operator
theory in boson mappings have been discussed in ref. [34].
The effect of spurious states caused by approximated di-
agonalizations and/or truncations of the basis was illus-
trated in ref. [34] for the cases of schematic surface delta
interaction and quadrupole-quadrupole interactions. The
Dyson boson mapping and related expansion techniques,
require, for practical applications, the definition of a phys-
ical space, that is to say the space of bosons which are in
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direct correspondence with fermion pair operators. That
physical space is contained in the space of ideal bosons,
and it defines the basis where the Hamiltonian can be di-
agonalized, at the cost of introducing spurious states. It
is clear that the solutions of a fully mapped (i.e., free
of truncations) Hamiltonian expressed in the ideal bo-
son space do not exhibit spurious components, but this
representation is not always feasible. The consideration
of solutions of the Hamiltonian in a physical boson sub-
space, implies the consideration, also, of spurious effects,
as pointed out in [35]. In the spirit of the work of refs. [35,
36] it is shown that the results of the effective operator
theory of [34] can be re-interpreted in a perturbative ap-
proach, and that this correspondence allows for the identi-
fication of spurious states. These results indicate that, as
a general prescription to isolate spurious states, one can
search for singularities of the similarity transformation,
after performing the Dyson boson mapping.

4 Matrix elements

The expectation value of the transformed Hamiltonian,
eq. (19), gives the potential-energy surface, E(α) = Er +
iEi, which depends both on the real and imaginary parts
of the order parameter α = ρeiθ, as well as on the actual
value of the coupling constants of the model [11]. The min-
ima of this potential-energy surface can be identified by
performing a variation of the order parameter for different
values of χ and κ. Different regimes of the solution are de-
termined by non-trivial values of the order parameter. In
the following we have summarized the expressions needed
to calculate expectation values in the different approxima-
tions, namely:

〈α|(b†)n1bn2 |α̃〉=N0Ñ0(2Ω)! ei(n2−n1)θ
ρn1+n2

(2Ω)n2
gn1n2(ρ),

(36)
where

gn1n2(ρ) =
lmax∑

l∗=lmin

(
ρ2

2Ω

)l 1
l!(2Ω − l − n2)!

, (37)

with lmax = min(2Ω − n1, 2Ω − n2), lmin = mod(n1, 2),
and l∗ indicates that the sum involves only odd or even
integers starting from lmin;

〈1|(b†)n1bn2 |1̃〉 = N1Ñ1(2Ω − 1)! ei(n2−n1)θ fn1n2(ρ),
(38)

where

fn1n2(ρ) =
lmax∑

l∗=kmin

ρ2l+n1+n2−2

(2Ω)l+n2−1

(l + n1)(l + n2)
l!(2Ω − l − n2)!

, (39)

with kmin = 1 − mod(n2, 2), and

〈α∞|(b†)n1bn2 |α∞〉 = ei(n2−n1)θ ρn1+n2 , (40)

〈1∞|(b†)n1bn2 |1∞〉=ei(n2−n1)θρn1+n2

× (n1n2ρ
−2+n1+n2+1+ρ2)

1+ρ2
. (41)

For the QRPA wave function the inversion of eq. (33) [25,
26] leads to

b† = (Γ † + zΓ )/
√

1 − |z|2,
b = (Γ + z∗Γ †)/

√
1 − |z|2. (42)

The evaluation of the matrix elements is straightforward,
giving

〈0|b†b|0〉 =
|z|2

1 − |z|2 , 〈0|Γb†bΓ †|0〉 = 1+|z|2
1−|z|2 ,

〈0|b†b†|0〉 =
z

1 − |z|2 , 〈0|Γb†b†Γ †|0〉 = 3z
1−|z|2 ,

〈0|bb|0〉 =
z∗

1 − |z|2 , 〈0|ΓbbΓ †|0〉 = 3z∗
1−|z|2 . (43)

In this way we have a complete family of trial states of
different complexity, which are available to compute the
expectation value of the Hamiltonian. The correspondence
between the complex parameters α and z is obvious, since
we can treat the ratio Y

X as a complex parameter.
We use a variational procedure to obtain the minimum

for the real part of the expectation value of the Hamilto-
nian. It has the form

〈α|H|α̃〉
〈α|α̃〉 =

[
(2ε + λ1)

g11

g00
+

λ2

2Ω
cos(2θ)

×
(

g02

g00
+ (2Ω − 1)

g20

g00

)]
ρ2

2Ω

−
[

λ1

2Ω

g22

g00
+ 2λ2 cos(2θ)

(
1 − 1

2Ω

)
g31

g00

]

× ρ4

(2Ω)2
+ λ2 cos(2θ)

g42

g00

ρ6

(2Ω)4
, (44)

for the ground state, and

〈1|H|1̃〉
〈1|1̃〉 = (2ε + λ1)

f11

f00
− λ1

2Ω

f22

f00
+ λ2 cos(2θ)

×
[(

1 − 1
2Ω

)
f20

f00
+

f02

f00

− 1
Ω

(
1 − 1

2Ω

)
f31

f00
+

1
(2Ω)2

f42

f00

]
, (45)

for the excited state. For the exponential trial states we
obtain

〈α∞|H|α∞〉 =
[
(2ε + λ1) + λ2 cos(2θ)

(
2 − 1

2Ω

)]
ρ2

−
[

λ1

2Ω
+

λ2 cos(2θ)
Ω

(
1 − 1

2Ω

)]
ρ4

+
λ2 cos(2θ)

(2Ω)2
ρ6, (46)
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〈1∞|H|1∞〉 = (2ε + λ1)
1

1 + ρ2
+

[
6ε + λ1

(
3 − 4

2Ω

)

+ 3λ2 cos(2θ)
(

2 − 3
2Ω

+
1

2Ω2

)]
ρ2

1 + ρ2

+
[
2ε + λ1

(
1 − 5

2Ω

)
+ λ2 cos(2θ)

×
(

2 − 11
2Ω

+
9

2Ω2

)]
ρ4

1 + ρ2

−
[

λ1

2Ω
+

λ2 cos(2θ)
Ω

(
1 − 1

2Ω
− 7

4Ω2

)]

× ρ6

1 + ρ2
+

λ2 cos(2θ)
(2Ω)2

ρ8

1 + ρ2
. (47)

The expectation value of the Hamiltonian (20) between
purely exponential coherent states is given by [14]

〈α∞|H|α∞〉 = [(2ε + λ1) + 2λ2 cos(2θ)] ρ2 . (48)

This quadratic dependence on ρ shows that (20) is the har-
monic approximation of the Hamiltonian (19). As is well
known, this approximation is valid as long as the minimum
of the effective potential is located at ρ = 0 but it fails in
the presence of a phase transition. This expectation value
can be seen as the result of the trivial substitution of the
operators A†, A in (9) by the complex numbers ρeiθ, ρe−iθ.

However, the expectation value of the Hamiltonian
(20) shows the following interesting features:

〈0|HQRPA|0〉 = (2ε + λ1)
|z|2

1 − |z|2 + 2λ2
|z| cos θ

1 − |z|2 , (49)

〈0|ΓHQRPAΓ †|0〉 = (2ε + λ1)
1 + 2|z|2
1 − |z12

+ 2λ2
3|z| cos θ

1 − |z|2 ,

(50)

ω(z) = 〈0|ΓHQRPAΓ †|0〉 − 〈0|HQRPA|0〉 =

(2ε + λ1)
1 + |z|2
1 − |z|2 + 4λ2

|z| cos θ

1 − |z|2 . (51)

In order to complete this section, and for later use, we
show the expressions corresponding to Fermi transitions
[6] between coherent states. The Dyson mapping of the
operator β− of eq. (7), written in the quasiparticle repre-
sentation, reads [8]

β−=upvn(A†)D+vpun(A)D =upvnb†
(

1− b†b
2Ω

)
+ vpunb ,

(52)
and the matrix elements are written as

〈1|β−|α̃〉 = N1Ñ0(2Ω − 1)!(
upvnf00(ρ) + vpun cos(2θ)

ρ2

2Ω
g02(ρ)

)
, (53)

〈1∞|β−|α∞〉 =
upvn√
1 + ρ2

(
1 + ρ2 − (2 + ρ2)

ρ2

2Ω

)

+
vpun√
1 + ρ2

cos(2θ)ρ2, (54)

〈0|Γβ−|0〉 =
upvn√
1 − z2

(
1 − z2

2Ω

)
+

vpun√
1 − z2

z , (55)

with

Ñ0 =

[
Ω∑

l=0

( ρ

2Ω

)4l 1
l!

(
(2Ω)!

(2Ω − 2l)!

)2
]−1/2

,

N1 =

[
Ω−1∑
l=0

ρ4l

(2l)!
(2l + 1)

]−1/2

. (56)

In (53) the operator β− connects states with even and odd
number of bosons, while in (54) the trial states contain
both even and odd powers of b†.

5 Results and discussion

The potential-energy surface 〈H〉 was minimized as a func-
tion of the complex order parameter α = ρeiθ. In all the
cases presented in the previous section the dependence of
〈H〉 on φ = 2θ (φ = θ for the QRPA) is given by

〈H〉 = A(ρ) + B(ρ) cos(φ) , (57)

and by the variations

∂

∂φ
〈H〉 = −B(ρ) sin(φ) = 0 ,

∂2

∂φ2
〈H〉 = −B(ρ) cos(φ) > 0 . (58)

Thus, at the minimum

cos(φ) = −1 , (59)

if B = 2λ2 > 0. We will use this condition in the rest of
the article. It is illustrative to show how the usual QRPA
results are obtained by using the variational method. To
find the minimum of eq. (49) we solve

∂

∂|z| 〈0|HQRPA|0〉 =

[
2(2ε + λ1)|z| + 2λ2(1 + |z|2)] /(1 − |z|2) = 0, (60)

which has the solutions

z0 =
±[(2ε + λ1)2 − (2λ2)2]1/2 − 2ε − λ1

2λ2
. (61)

This value of z0 with the positive sign coincides with the
value given in (28), which was obtained by applying the
standard equation-of-motion method. By calculating the
excitation energy (51) at the minimum, after some simple
algebra, we get

ω(z0) = [(2ε + λ1)2 − (2λ2)2]1/2 , (62)
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Fig. 1. Expectation values of the Hamiltonian, on the ground
and excited states, as a function of the order parameter ρ.
The energies are obtained by using the trial wave functions de-
scribed in the text. We denote the expectation values as follows:
〈0|HQRPA|0〉 and 〈0|ΓHQRPAΓ †|0〉 as “QRPA”, 〈α∞|H|α∞〉
and 〈1∞|H|1∞〉 as “exponential”, and 〈α|H|α̃〉 and 〈1|H|1̃〉
as “Dyson”. Panels (a), (b) and (c) show the results for
κ = 0.0, 0.1 and 0.2 MeV, respectively. The results shown in
(a) correspond to λ1 = λ2 = 0, for which the Hamiltonian of
eq. (19), is quadratic in b† and b. In each panel, the lower group
of curves represent ground-state energies, while the upper ones
correspond to excited-state energies.

as expected from the results of other studies [37]. In the
following we shall present numerical results which corre-
spond to the choice of the model parameters (eqs. (9)
and (12)):

Ω = 5 , Np = 4 , Nn = 6 , ε = 1.0MeV , χ = 0 . (63)

The quantities Np and Nn are the number of active pro-
tons and neutrons, respectively, considered in the BCS
equations. The particle-particle (proton-neutron) strength
κ is varied in the range 0 ≤ κ ≤ 0.2 MeV. Inserting these
numerical values in (12) the parameters in the Hamilto-
nian (9) take the simple form λ1 = −9.6κ, and λ2 = 4.8κ.
The critical behavior of the potential-energy surfaces is
shown in fig. 1, where the values obtained by using the
QRPA, the exponential, and the Dyson approximation,
are shown. Due to its normalization the QRPA wave func-
tion cannot be evaluated beyond |z| → 1, where the ener-
gies go to infinity. The Dyson approximation takes into ac-

Fig. 2. Excitation energies as a function of the order parameter
ρ. Panels (a), (b) and (c) show the results for κ = 0, 0.1 and
0.2 MeV, respectively.

count the Pauli principle at the level of the wave function
and exhibits a saturation at nb = 2Ω, with the asymptotic
value (ρ → ∞) 〈α|H|α〉 = 2εnb. For the three trial wave
functions, the energies monotonically increase with ρ and
have their minimum at ρ = 0. For κ = 0.1 MeV, fig. 1(b),
the QRPA curve goes to infinity again, but now the change
in the slope occurs closer to |z| = 1. The other curves are
similar, but beyond ρ ∼ 2.0 the exponential trial state
has a maximum and then goes steeply to minus infinity
[14] as a consequence of the violation of the Pauli princi-
ple. Excited-states energies closely follow the behavior of
the ground-state energies. For the QRPA and Dyson trial
states the minima in the energy are clearly seen around
ρ = 0.8. The exponential trial state still has its minimum
at ρ = 0, it has not yet suffered the transition to the de-
formed ground state. In fig. 1(c) we present the results for
κ = 0.2 MeV. This value lies beyond the phase transition,
which strongly modifies all the expectation values. Now,
the excited state energies lie below the spherical ground-
state one, as expected in a permanently deformed regime.
The QRPA trial state has a maximum at ρ = 0. This
feature is the so-called collapse of the QRPA [38], where
2λ2 > 2ε+λ1 and ω becomes purely imaginary. The other
two curves recover the normal order around ρ = 1.3, where
there is a crossing between the ground and excited states.
Since the minimum lies in this second region, these ap-
proximations are still able to describe the physics beyond
the QRPA phase transition. To clarify this last point the
excitation energy, defined as the difference between the
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Fig. 3. Expectation value of the Hamiltonian at the minimum
for the ground and excited trial states as a function of κ.

expectation values of the Hamiltonian evaluated in the
excited and ground state, respectively, is plotted in fig. 2
for the three trial states. The values are displayed by us-
ing the same conventions of fig. 1. For κ = 0, panel (a),
it is seen that the excitation energies also have a mini-
mum at ρ = 0, which is displaced to ρ ≈ 0.8 for κ = 0.1
MeV, panel (b), except for the exponential wave function.
For κ = 0.2 MeV, panel (c), the three excitation energies
are negative up to ρ ≈ 1.3. From that point on they are
positive for the Dyson and exponential trial wave func-
tions. The previous results describe intrinsic properties
of the expectation values, but the observable energies are
those which minimize them. The expectation values of the
Hamiltonian at the minimum are presented in fig. 3, for
the considered three trial wave functions, and as a function
of the interaction strength κ. The lower curves represent
the ground-state energies and the upper curves the excited
states ones. The QRPA energies go to minus infinity for
values of κ slightly larger than 0.1 MeV. The Dyson and
exponential trial states show a similar behavior. However,
while the Dyson trial states become more bound, the ex-
ponential trial states are sensitive to the presence of the
residual interaction for κ > 0.1 MeV. There, a sudden
phase transition takes place, showing the influence of spu-
rious components in the trial wave function [14,23]. The
decrease of the energy of the exponential excited state
reflects the change in λ1 as a function of κ without any
residual effect related to λ2. Figure 4 depicts the behavior
of the excitation energy as a function of κ. In this figure
we have included the results for the three different trial
wave functions and the exact one for comparison. The
QRPA collapse at κ ≈ 0.1 MeV is clearly shown. The ex-
ponential trial states overestimates the excitation energy,
while the results obtained with the Dyson wave function
are very close to the exact results up to κ ≈ 0.12 MeV. In
fig. 5 the number of bosons (or quasiparticle pairs) in the
ground states (a) and excited states (b) are shown as func-

Fig. 4. Excitation energies as a function of κ.

Fig. 5. The expectation value of the number of proton-neutron
pairs as a function of κ for the ground (a) and excited (b) trial
wave functions.

Fig. 6. The Fermi beta-transition amplitudes as a function
of κ.

tions of κ. This number is a measure of the ground-state
correlations and it diverges when the QRPA approaches
the point of collapse. The exponential wave functions show
the phase transition again, as the sudden increase in the
number of bosons around κ = 0.1 MeV. The Dyson trial
wave function reproduces fairly well the number of bosons
in the ground state, but largely overestimates its number
in the excited state. Finally, fig. 6 shows results for tran-
sitions induced by the Fermi β−-operator (cf. eq. (52)).
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The results are presented as a function of κ and, as in the
previous figure, they include the three different trial wave
functions and the exact results. In general the transition
amplitudes decrease as the residual interaction increases.
However, the exponential trial states only show this effect
after the phase transition, i.e. away from the point where
the QRPA collapses. The Dyson states are again very close
to the exact transition amplitudes up to κ ≈ 0.12 MeV.

6 Conclusions

In the present work we have described the results of the
combined application of the Dyson boson mapping tech-
nique and of the use of a coherent-state representation
to characterize phase transitions. We have applied this
method to study the phase domains of a schematic Hamil-
tonian, involving correlations in the ground state and in
excited states. For the considered example we have shown
that the usual QRPA approach can be obtained as the
result of a variational calculation. The proof involves the
use of the bosonic image of the Hamiltonian and a trial
state which is the coherent state associated to the QRPA
boson operator. In more complex situations, with more
than one degree of freedom, one cannot extract an exact
QRPA vacuum state. It can be defined only if the quasi-
boson approximation is adopted to calculate expectation
values and commutators. In this general case the QRPA
theory loses its variational interpretation [26].

Exponential trial states, which are coherent states in
the traditional sense, exhibit a sudden phase transition
from the boson vacuum to a correlated ground state. The
sudden effect is related with the violation of the Pauli prin-
ciple and with the presence of spurious mixing of odd and
even number of bosons in the wave functions. The Dyson
trial states are built as finite sums and they do not contain
spurious states. The excitation energies, number of bosons
and beta-transition amplitudes evaluated using the Dyson
trial states are very close to the exact values. These results
are relevant in the context of the coherent-state descrip-
tion of systems based on the SO(5) and SO(8) algebras
[6,7]. In these cases, no problems with spurious states oc-
cur because there is an exact decoupling of the collective
space to the one of the spurious states [10,39]. Spurious
states appear in the SO(5) and the SO(8) models when
the number of bosons is larger than (2Ω) [39]. In the more
general situations, if the symmetries of the Hamiltonian
are preserved by the boson mapping, the ideal basis can be
labeled by the quantum numbers of the symmetry oper-
ators, and spurious states can approximately be removed
by performing variations around values fixed by the sym-
metry. This is the procedure which we have adopted in
the present work.
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